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We have carefully read Dr. Yu and his colleagues’1 review on
the mechanism of hamstring muscle strain injury in sprinting.
There is no doubt that they have done a lot work in this field.
Their views are based on 3 pieces of evidence. First, observa-
tions from in situ animal models suggest that muscle strain
injuries are highly associated with eccentric contractions.
Second, the magnitude of muscle strain, rather than the force, is
the primary risk factor for strain injuries. Third, studies on
sprinting biomechanics suggest that the hamstrings undergo the
greatest stretch and reach their maximum length during the late
swing phase. Therefore, the late swing phase is considered the
most hazardous for hamstring injuries to occur.

First and most importantly, we agree that the late swing
phase is a phase of high risk for incurring hamstring strain
injuries. Our studies are consistent with previous research
reporting that the peak hamstring stretch and force occur in the
late swing phase of sprinting prior to foot contact.2,3 Our results
showed that during the terminal swing phase, the thigh starts to
extend backward but the leg is still rotating forward due to
motion-dependent torque (MDT, or termed as interaction
torque).4 In order to pull the leg backward and downward prior
to ground contact, the hamstring muscles contract intensely,
creating an acceleration that causes a quick eccentric to con-
centric change. Our data revealed that the largest muscle
torques (MST) occurred at the end of the swing phase, almost
simultaneously with the largest hip extension and knee flexion
MST. The MST was used mainly to counterbalance the stretch-
ing effect of the MDT during the swing phase. Moreover, our
results highlighted that the high load on the hamstrings was
caused by the MDT, since the MST functioned to counterbal-
ance the MDT to control the rapid limb rotation during the
swing phase. We further found that the major component of the

MDT at both knee and hip was the motion-dependent torque
due to the acceleration of the leg. These findings help explain
why the hamstrings are stretched to their maximum length and
the muscle force reached its maximal value in the late swing
phase, as observed by others.

Second, there is great debate whether the hamstrings are
susceptible to injury during the stance phase of sprinting.
Although many scientists reject the idea that the stance phase
poses any risk of hamstring injury because it is not associated
with an eccentric contraction, some will insist that the ham-
strings are most susceptible to injury in early stance.5,6 The
rationale for this conjecture is that both the knee flexion and hip
extension moments reach the greatest value in early stance,
with the hamstring muscles generating the main force. The vast
majority of force must be absorbed by the muscles in early
stance,7 which is not surprising when one considers that a
human leg is about 10% of the entire body weight, while the
ground reaction forces (GRFs) during sprinting are more than
300% of body weight.

Our findings also support this point of view.4 During the
initial stance phase, the GRFs pass in front of the knee and hip,
which results in a large extension torque at the knee and a
flexion torque at the hip (external contact torques, EXT). These
external contact torques apply great stress to the hamstring
muscles. To counteract this effect, the knee flexors and hip
extensors, that is, the hamstring muscles that serve both these
roles, must produce great flexion torques at the knee and exten-
sion torques at the hip. The average peak MSTs at the knee and
hip joints are −203.4 ± 93.6 N ·m and 455.2 ± 198.7 N ·m,
respectively, for elite sprinters running at speeds close to
10 m/s. The moment arm of the hamstrings at the knee joint in
the sagittal plane is approximately 0.02–0.04 m, thus requiring
a hamstring force between 5777 N and 11,554 N to create the
measured torques, which is at least 8 times the subjects’ average
body weight.

The hamstrings are contracting concentrically during this
phase. For animal models of injury and during sprinting in
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humans, negative work (i.e., energy absorbed) during eccentric
contractions has been shown to correlate best with injury.8

However, this is not to say that force has nothing to do with
injury. Besides, the acknowledged risk factors, such as
musculotendon strain, muscle force, flexibility, muscle activa-
tion, and contraction rate, comprise a more complex framework
in human sprinting than in a well-controlled, isolated eccentric
contraction of an in situ animal muscle. Furthermore, the initial
phase of stance follows the late swing phase instantaneously;
they are continuous phases and may be considered a single
period, referred to as the swing–stance transition. During this
period, the hamstrings contract eccentrically and then switch
rapidly to a concentric contraction. The hamstrings function to
extend the hip and flex the knee continuously, not only coun-
teracting the passive effects but also the force generated by the
antagonistic muscles. Strength imbalances between the ham-
strings and the quadriceps have long been considered possible
causes for hamstring strain injuries.9

In summary, we consider the late swing and early stance of
sprinting as high-risk phases for incurring hamstring injuries.
Our study provides initial answers to why, how, and when peak
loads on the hamstring muscles are generated in sprint running:
in early stance and late swing. The external GRFs passing
anteriorly to the knee and hip (early stance) and the inertial
loads produced by the motion of the segments, especially the
leg (late swing), require the high hamstring forces.
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